If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2=8y+16=64
We move all terms to the left:
y^2-(8y+16)=0
We get rid of parentheses
y^2-8y-16=0
a = 1; b = -8; c = -16;
Δ = b2-4ac
Δ = -82-4·1·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{2}}{2*1}=\frac{8-8\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{2}}{2*1}=\frac{8+8\sqrt{2}}{2} $
| n+-15=-18 | | 4x2-10x+3=2x-5 | | -9x-3(6)=18 | | -24x=-90 | | 8x-2(x-3)=-3(x+7) | | n+-18=-19 | | -9x−3(6)=18 | | 2x+2+10x=90 | | 10x+5(-4)=10 | | 7^4x-11=1 | | 24x-2(6-x)=3(6x=2)+6 | | 1/3(x=2/3)=-18 | | -3(4x+1)+6x=-3(3x=9) | | 6x/9-4x/2=-5 | | -6x=3-39 | | 3000000=x^2+x | | 2y-7=11y+38 | | ]⅗(x+6)=18 | | 6(x+3)-18=39-3 | | ⅗(x+6)=18 | | 4(x+1)-3=4(x-4) | | 3^(-2x+10)-27=702 | | 4x-18+78=180 | | 5+9y=5y-7 | | -21-21=10y-4y | | 2v+3(8-v)=-6 | | 4x=4^2x+1 | | 2x+2(7)=2 | | -10x-5=-x+4 | | 2(5x-3)=10 | | 8(7x-1)=24x | | 8x2-22+11x=8-2x2-9x |